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Abstract. In the present paper we consider a quite general problem of motion of a rigid body
under the action of an axially symmetric combination of potential and gyroscopic forces. Special
versions of this problem are the classical problems of motion of a heavy body, gyrostat or a body
in a liquid. Another example is the problem of motion of a heavy, magnetized and electrically
charged body under the combined action of gravitational, magnetic electric and Lorentz forces.

We introduce a method, based on the invariance of the equations of motion under certain
transformations. This method enables a systematic construction of several integrable problems
generalizing all the known general (for arbitrary initial conditions) and conditional (on a single
level of the cyclic integral) integrable problems as well as particular solutions. Five general
integrable cases are constructed, that generalize known ones by the inclusion of one to four
additional free parameters. Fifteen conditional integrable cases generalizing all the known general
and conditional cases and containing an additional arbitrary function are introduced. The latter
type of generalization can be applied to any one of a large collection of particular solutions known
in many versions of the problem considered. The method also enables the construction of the
explicit solutions of the equations of motion in the generalized cases from those of the original
cases. Detailed physical interpretation is given for some cases.

1. Introduction

The subject of rigid-body dynamics is one of the oldest subjects that have been intensively
studied for a long time. It became clear after the works of Kovalevskaya, Liouville and
others that the problem of motion of a heavy rigid body about a fixed point can be reduced
to quadratures only in the three cases of Euler, Lagrange and Kovalevskaya (e.g. [10, 51]).
When certain other more general problems were considered, some integrable problems were
found that generalize those three cases. An example is the problem of motion of a body in a
liquid (see e.g. [7,25]), admitting six integrable cases [5]. Recently, several methods have been
developed and applied to prove the nonintegrability of certain limited versions of the above
problems and thus validating the rarity of integrable problems in dynamics (e.g. [52–54] and
references cited therein).

The question arises whether it is possible to determine the moments of forces that lead
to integrable problems when applied to the body. As there is no available method capable of
dealing with this question, it acquires great importance to construct, classify and tabulate as
much integrable cases as possible and in their most general setting. A natural way is to find as
wide as possible generalizations of the known integrable problems.

† Dedicated to the memory of Professor V G Dumin, my teacher and friend.
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In a recent short paper [1] we have pointed out six new general integrable cases that
generalize six of the seven known general integrable cases in rigid-body dynamics by adding
to their structure a set of arbitrary parameters. In the present paper we present the method
that has led to five of those generalized cases. We show that this method enables systematic
construction of several conditional integrable problems generalizing all the known general and
conditional integrable problems, by the inclusion of an arbitrary function in their structure.
The same generalization applies for all known particular solutions of the integrable and
nonintegrable problems. Moreover, this method allows the construction of explicit solution of
each generalized case in terms of the solution of the original case whenever the latter is known.
It also enables us to deduce certain qualitative properties of motion in the generalized cases
from those of the original ones.

Consider a rigid body in motion about its fixed pointO. Let OXYZ andOxyz be
two Cartesian coordinate systems, fixed in space and in the body, respectively. Also let
ω = (p, q, r) be the angular velocity of the body andγ = (γ1, γ2, γ3) be the unit vector in the
direction of theZ-axis, both being referred to as the body system which we take as the system
of principal axes of inertia.

Those variables can be expressed in terms of Euler’s angles:ψ the angle of precession
about theZ-axis,θ the angle of nutation (between thez- andZ-axes) and the angle of proper
rotationϕ about thez-axis. They have the form

γ1 = sinθ sinϕ γ2 = sinθ cosϕ γ3 = cosθ

p = ψ̇ sinθ sinϕ + θ̇ cosϕ q = ψ̇ sinθ cosϕ − θ̇ sinϕ r = ψ̇ cosθ + ϕ̇.

The problem considered here is the general problem of motion of a rigid body about a
fixed point under the action of a combination of a conservative axisymmetric around theZ-axis
potential and gyroscopic forces, described by the Lagrangian [4]:

L = 1
2ωI · ω + l · ω − V (1)

whereI = diag(A,B,C) is the inertia matrix of the body. The potentialV and the vectorl
depend only on the Poisson variablesγ1, γ2, γ3.

The equations of motion for this problem can be written in the Euler–Poisson form [4]:

ω̇I +ω × (ωI +µ) = γ × ∂V
∂γ

γ̇ +ω × γ = 0
(2)

where

µ = (µ1, µ2, µ3) = ∂

∂γ
(l · γ)−

(
∂

∂γ
· l
)
γ. (3)

As was shown in [4], potential terms of equations (2) can be interpreted in most cases in
terms of three classical interactions: gravitational, electric and magnetic. Gyroscopic terms
can be accounted for by attaching rotors to the body and adding Lorentz forces.

Equations (2) admit three general first integrals: (a) Jacobi’s integralI1 [1]. This coincides
with the integral of total energy when the moments of gyroscopic forces vanish, i.e. when
µ = 0. (b) The geometric integral|γ|2 = 1. (c) An integral linear in the components of
angular velocity corresponding to the cyclic angle of precession around the axis of symmetry
of the fields:

I3 = (ωI + l) · γ = const= f. (4)

This integral is usually called the area’s integral. The system (2) will be integrable in the sense
of Liouville, as well as in the sense of Jacobi, whenever the integralI4 exists and is functionally
independent ofI1, I3 [1].
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2. A transformation of the equations of motion

In [3–5] we have applied the transformationω = ω′ + νγ, whereν is a constant, to the system
(2) and used it to generate integrable cases containingν as a parameter. In [6], on the basis of
the properties of the equation of motion maximally reduced to a single equation of the second
order, we have indicated the possibility to use the same transformation withν as a function of
γ. Here we deal with this idea in detail. In fact, the substitution

ω = ω′ + νγ ν = ν(γ1, γ2, γ3) (5)

leaves invariant the form of the Poisson equation in (2), transforming it to

γ̇ +ω′ × γ = 0 (6)

while (4) takes the form

I3 = (ω′I + l + νγI) · γ = f. (7)

Substituting in the Eulerian part of the equations of motion, using (6) and rearranging
terms, we get:

ω̇′I +ω′ ×
(
ω′I +µ + 2νγI − ν(tr I)γ + γI · γ

∂ν

∂γ
−
(
γI ·

∂ν

∂γ

)
γ

)
= γ ×

(
∂V

∂γ
− νµ− ν2γI + (ω′I · γ)

∂ν

∂γ

)
. (8)

On the levelI3 = f (say), we substituteω′I · γ from (7) and after some manipulations write
the equations of motion in the final form:

ω̇′I +ω′ × (ω′I +µ′) = γ × ∂V
′

∂γ
γ̇ +ω′ × γ = 0

(9)

where

µ′ = µ +
∂

∂γ
(νγI · γ)−

[
∂

∂γ
· (νγI)

]
γ

≡ µ− 2νγĪ + γI ×
(
∂ν

∂γ
× γ

)
V ′ = V + ν(f − l · γ)− 1

2ν
2γI · γ

(10)

andĪ = 1
2 tr(I)δ − I. From the first of equations (10) and comparing with (3), we can also

write the transformation law for the vectorl in (1)

l′ = l + νγI. (11)

Thus, the transformation (5) preserves the form of the equations of motion on a fixed level
of I3, changing onlyV,µ (or l) toV ,́µ′ (or l′). The valuef of I3 enters in the potentialV ′ as
a parameter. The solution of the transformed equations of motion (10) can be obtained from
that of (2) through the substitution (5).

From the form of (5), the transformed system (10) can be understood as describing the
motion of the same body as in (2) referring it to a noninertial frame moving with the position-
dependent angular velocityν. The new terms that appeared in the transformed system are the
inertial forces due to the rotation of the frame.

There is a different and more useful way of looking at (10). We shall make use of the
situation that the transformation preserves the form of the equations of motion to understand
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the transformed equations on their own as describing the motion of a second body in the inertial
frame under the forces determined byV ′,µ′. In other words, we consider the system (10) as
formally generalizing (2) to which it reduces whenν = 0. However, this will not prevent us
from relating the solutions of the two systems by the (formal) transformation (5). This duality
in interpretation is the key for understanding the present method. In the rest of this paper we
will mostly regard the system (10) as a generalization of (2) rather than a transformed form of
it.

From the above considerations we can readily deduce the following theorems connecting
the solutions of the two systems.

Theorem 1. If the first system, withV,µ, is integrable on a fixed level of the cyclic integral
I3 = f with the fourth integralI4 = F(ω,γ), then for arbitraryν(γ) the second system,
with V ′,µ′ is integrable on the same level of the cyclic integral and its fourth integral is
F(ω′ + ν(γ)γ,γ). The converse also holds.

Theorem 2. If {ω = Ω(t,ω◦,γ◦), γ = Γ(t,ω◦,γ◦)}, is the general solution of the first
system satisfying the arbitrary initial conditions{ω = ω◦, γ = γ◦}, then for arbitraryν(γ)
the solution of the second system, satisfying the initial conditions{ω′ = ω′◦, γ = γ◦} is
{ω′ = Ω(t,ω′◦ + ν(γ◦)γ◦,γ◦)− ν(Γ(t,ω′◦ + ν(γ◦)γ◦,γ◦))Γ(t,ω′◦ + ν(γ◦)γ◦,γ◦)

γ = Γ(t,ω′◦ + ν(γ◦)γ◦,γ◦)}. (12)

Theorem 3. If the first system admits any particular solution{ω = Ω(t), γ = Γ(t)}, then for
arbitrary ν(γ) the second system admits the solution{ω′ = Ω(t)− ν(Γ(t))Γ(t), γ = Γ(t)}.
Theorem 4. The qualitative behaviour of the second system with respect to the partγ of
variables is exactly the same as that of the first system.

The last theorem follows from the fact that the solution of the second system for the
Poisson variablesγ is not affected by the functionν(γ).

In the following sections we discuss the consequences of the above theorems in application
to known solvable problems of rigid-body dynamics. Theorem 1 ensures the integrability of
the problem (9) on the levelf of the cyclic integral and for arbitraryν(γ) whenever the
corresponding problem (2) is integrable, either for arbitrary initial conditions or only on a
fixed level of the cyclic integral. Theorem 2 relates the explicit solutions of the two problems.
Theorem 3 enables the generalization, by means of including the functionν, of particular
solutions of (2), i.e. solutions not involving any arbitrary constants or involving a number of
constants of motion less than needed to guarantee integrability. Theorem 4 will be used to
deduce certain qualitative properties of the motion of the generalized system from those of the
original system.

2.1. On general and conditional integrable cases in rigid-body dynamics

Throughout the present work we shall call a problemgeneral integrableif I4 exists for arbitrary
initial conditions andconditional integrableif it admits a fourth integralI4 only on a single
level f of the cyclic integralI3 but for all initial conditions compatible with that level. In
both types of problems the solution can be reduced to quadratures through the application of
Liouville’s theorem or Jacobi’s theorem to the reduced two-dimensional Hamiltonian system.
It is thus sufficient to point out the fourth integral to ensure integrability in those cases. In
some cases it becomes possible to construct a quantity constant only under other restrictions
on the initial state of motion, which do not fit as conditions on the integral levels ofI3 and
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I1. Then one cannot apply Liouville’s theorem to construct the solution and a procedure for
accomplishing this task should be indicated separately. In such cases we deal withparticular
solutionsof the problem.

Equations of motion of the form (2) cover a wide range of applications in rigid-body
dynamics. Special cases are the classical problem of motion of a heavy body, its generalizations
to the case of a gyrostat moving under potential and Lorentz forces. They also cover certain
problems in which the body has no fixed point.

In tables 1 and 2 we shall give a list of all the known 15 general and conditional integrable
cases in different versions of the general problem (2). As those cases are scattered in the
literature, we summarize them in two tables: one for general and one for conditional cases.
The cases that are special versions of another one containing a larger number of parameters
are grouped under that one and conditions leading to special versions are given. In some of
these cases a parametern is present, which can be excluded by a rotation with constant angular
velocity and thus it suffices to consider the special casesn = 0. The latter will be called the
basic cases. For simplicity we provide the complementary integrals only for those basic cases.
It should be noted that those tables do not cover particular solutions valid under any other
restrictions on the initial motion. Several solutions of this type can be found in the literature
dealing with various versions of the general problem discussed here. The list provided in [13],
mainly concerning motion in the uniform gravity field, is now far from complete.

2.2. The case of constantν

In that case the transformation (5) has the simple meaning of transforming the problem of
motion to a new reference frame rotating with a uniform angular velocityν around the space
axis of symmetry. We are more interested in the following interpretation: letS andS ′ be two
identical bodies subject in the inertial frame to forces characterized by the couples(V ,µ) and
(V ′,µ′), respectively. The motion of the bodyS with angular velocityω can be obtained in
all its details from the motion ofS ′ with angular velocityω′ by rotating the whole picture with
the speedn so that

ω = ω′ + nγ. (13)

On the other hand, in the case of constantn the constant termnf in the transformed
potential can be discarded, so that (10) take the form

V ′ = V − nl · γ − 1
2n

2γI · γ
µ′ = µ− 2nγĪ or (l′ = l + nγI ).

(14)

(1) The difference in the potentials ofS ′ andS consists of two terms:

(a) The term− 1
2n

2γI · γ is the resultant force of the centrifugal forces on the body due
to the rotation. It also has the form of the approximate potential of the body under
the action of a Newtonian centre of attraction (see, e.g., [10]).

(b) The term−nl · γ can be interpreted in various ways, depending on the form of the
vectorl that characterizes the gyroscopic forces. For instance, a constant gyrostatic
momentk of a rotor in the bodyS induces onS ′ the potential term−nk · γ. That is
the same as due to the effect of a uniform gravity field in theγ direction on a mass
distribution whose centre lies on the axis of the rotor.

(2) The term−2nγĪ added toµ (or nγI added tol) is due to the Coriolis forces on the body
due to the uniform rotation. It can be interpreted as resulting from the Lorentz effect of a
uniform magnetic fieldB = γ on a distribution of electric charges, fixed in the body. In
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fact, the Lorentz force acting on the chargee at the pointr is e
c

dr
dt × B, so that the total

Lorentz moment on the body is∑
r ×

(
e

c

dr

dt
× B

)
=
∑

r ×
[e
c
(ω × r)× B

]
= ω × e

c

∑
(r · B)r. (15)

Comparing to (2), we deduce that the change inµ, µe (say) is given by

µe = −
∑ e

c
(r · B)r = −BJ (16)

where J is a constant matrix,Jij = −
∑

e
c
xixj . This makes inl an increment

le = 1
2BIe = nγI, where the inertia matrix of the electric distributionIe = 2nI, i.e.

must be proportional to the inertia matrix of the distribution of mass of the body.

Thus, one can always introduce the above combination of physical effects to the problem of
motion without complicating its mathematics in any way. In particular, an integrable problem
or any solution with the pair(V ,µ) will lead to a family of integrable problems or solutions
corresponding to(V ′,µ′) containing the additional parametern.

In a few works, Grioli and other authors considered the motion of an electrically charged
body, for whichIe is proportional toI, under the action of Lorentz forces (e.g. [39–41]). In
a much wider version we have studied the motion of a gyrostat under the action of a coaxial
combination of: a uniform magnetic field and linear electric and gravitational fields [3]. It was
noted in [5] that the mathematical formulation of the above version coincides with the new
form of the problem of motion of a body in a liquid introduced in that work. This meant that
each one of the six integrable cases of the latter problem gives a valid analogue in the problem
of motion of a charged body.

3. Examples of generalized conditional cases and particular solutions

By theorem 1 in section 2 all the 15 cases listed in the two tables admit a generalization using
the transformation (5) to conditional cases involving the arbitrary functionν(γ1, γ2, γ3). The
explicit solution of the equations of motion in each case can be obtained from the solution of
the original case, if the last is known, by theorem 2. As an illustration we apply this procedure
to some of the soluble cases in detail. All other cases in the two tables can be treated in the
same way.

3.1. A conditional generalization of the Rubanovsky–Steklov general case

We take this case in itsbasicform (table 1: case 6):

µ = k + aγI−1 V = 0 (17)

for which

l = k + 1
2a[tr(I−1)γ − γI−1]

I3 = (ωI + l) · γ = f
I4 = 1

2|ωI + k|2 − aω · γ.
(18)

Consider the system

ω̇I +ω × (ωI +µ) = γ × ∂V
∂γ

γ̇ +ω × γ = 0
(19)
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in which

µ = k + aγI−1 +
∂

∂γ
(νγI · γ)−

[
∂

∂γ
· (νγI)

]
γ

V = βν − ν(k · γ + 1
2a[tr(I−1)− γI−1 · γ])− 1

2ν
2γI · γ

(20)

whereβ is any given constant andν is an arbitrary function inγ. This system admits the linear
integral

I3 = ωI · γ + k · γ + 1
2a[tr(I−1)− γI−1 · γ] + νγI · γ = f (21)

and on the levelI3 = β the system becomes integrable with the complementary integral

I4 = 1
2|ωI + νγI + k|2 − a(ω · γ + ν). (22)

This result can be checked directly using the equations of motion (19), (20) and the integral
(21) and without referring to the above constructions. In fact, one can show, using a computer
algebra package, that

dI4
dt
= f − β
ABCγ3

P (23)

whereP is a polynomial in the components ofω depending onγ and the parameters of the
system.

One must note here that we have not made any statement about the integrability of the
system (19), (20) for arbitrary initial conditions i.e. on arbitrary level ofI3 = f 6= β. The
special caseν(γ) = n gives the Rubanovsky–Steklov case which is a general one, since the
constant termβν in the potential is immaterial in that case.

The explicit solution of the system (19), (20) on the levelI3 = β can be obtained from the
knowledge of the solution of the basic caseν = 0 (characterized by (17), (18) and generalizing
Steklov’s result only by the inclusion of the gyrostatic moment). This was achieved only in
two particular cases:

(1) In Steklov’s casek = 0, by Kötter in terms of theta functions of two variables [44].
(2) In Joukovsky’s casea = 0, the solution was obtained by Volterra [45] in terms of

Weierstrass functions. An alternative solution in terms of Jacobi’s elliptic functions was
constructed by Wittenburg [46].

Despite the interest in applying methods of modern algebraic geometry (e.g. [55]), the
general solution for the full basic casea|k| 6= 0 was not considered.

3.2. A conditional case related to Lagrange’s type

Consider the motion of the body whose matrix of inertia is diag(A,A,C), under the forces
corresponding toV = v(γ3)andl = (`γ1, `γ2, l3), wherè , l3 depend onγ3 only. This problem
is integrable with two cyclic integrals [1, 16]. Consider the following system involving the
four arbitrary functionsv(γ3), `(γ3), l3(γ3) andν(γ1, γ2, γ3):

V = v(γ3) + bν − ν[(γ 2
1 + γ 2

2 )` + l3γ3] − 1
2ν

2(A + (C − A)γ 2
3 )

µ = ∂

∂γ
(l · γ)−

(
∂

∂γ
· l
)
γ

(24)

wherel = ((`+Aν)γ1, (`+Aν)γ2, l3+Cνγ3). This is a system with one cyclic coordinate—the
precession angleψ—corresponding to the integral

I3 = A(pγ1 + qγ2) + (Cr + l3)γ3 + (γ 2
1 + γ 2

2 )` + ν[A + (C − A)γ 2
3 ].
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The proper rotation angleϕ is no longer cyclic and the integral

I4 = C(r + νγ3) + l3

is conditional on the levelI3 = b. In fact, one can easily find

dI4
dt
= (I3− b)

(
γ2
∂ν

∂γ1
− γ1

∂ν

∂γ2

)
. (25)

This expression vanishes whenI3 = b. Although the system with (24) may not be integrable
in general, it is integrable on the levelI3 = b.

3.3. Generalization of particular solutions

A large number of particular solutions of (2) is known. Most of them are concerned with the
classical problems of heavy body, heavy gyrostat and the body in a liquid (e.g. [10,13]). Much
fewer cases deal with more general versions of (2), e.g. [58]. However, a complete up-to-date
review of those solutions does not exist at the present time. As an illustrative example, we
apply the transformation method here to obtain a generalization of Grioli’s regular precession.

On a dynamical basis Grioli established the possibility of a regular precession of the
heavy rigid body about a nonvertical axis under certain conditions on the parameters of the
body [42]. Gulyaev derived the full explicit solution of this case [43] (see also [10]). We
present the necessary details in brief. The solution differs from that of Gulyaev only in that we
have assigned a certain value for the initial time moment, so that the solution becomes more
transparent.

Let the axes be arranged such thatA > B > C. For

V ′ = aγ1 + cγ3 µ′ = 0 (26)

wherea
√
B − C = c√A− B, the system of equations (9) admits a particular solution

p′ = �

s
(a − c cos(�t)) q ′ = � sin(�t) r ′ = �

s
(c + a cos(�t))

γ1 = −�
2

s2
[Cc cos(�t) + (B − C)a sin2(�t)]

γ2 = �2

s3
sin(�t)[(Aa2 +Cc2)− (A− C)ac cos(�t)]

γ3 = �2

s2
[Aa cos(�t) + (A− B)c sin2(�t)]

(27)

wheres =
√
a2 + c2, �2 = s√

(A−B+C)2+(A−B)(B−C)
. This solution corresponds to a uniform

precession of the body. The angular velocityω′ can be written as the sum of two terms

ω′ = �ζ +�α (28)

whereζ,α are two unit vectors: the first fixed in the body (orthogonal to a circular section of
the inertia ellipsoid) and the second fixed in space [43]

ζ =
(a
s
, 0,

c

s

)
α =

(
−c
s

cos(�t), sin(�t),
a

s
cos(�t)

)
. (29)

Note thatζ is orthogonal toα and thatα is inclined to the upward vertical vectorγ at a fixed
angleδ,

cosδ = A− B +C√
(A− B +C)2 + (A− B)(B − C)

. (30)
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The body rotates with the uniform velocity� around the vectorζ fixed in it, while that
vector rotates with the same velocity� about the directionα fixed in space.

We now consider another case of motion of the same body as above, but we will replace
V ′,µ′ by

V = aγ1 + cγ3− 1
2n

2(Aγ 2
1 +Bγ 2

2 +Cγ 2
3 )

µ = n((B +C − A)γ1, (C +A− B)γ2, (A +B − C)γ3).
(31)

where, for simplicity,n is taken as a constant. It is easy to verify that applying the substitution
ω = ω′ +nγ transforms (31) into (26). Thus, the system with (31) admits a particular solution
representing Grioli’s precession uniformly rotated with speedn about the vertical. In this
solutionγ1, γ2, γ3 are the same as in (27), while

p = �

s
(a − c cos(�t))− n�

2

s2
[Cc cos(�t) + (B − C)a sin2(�t)]

q = � sin(�t) +
n�2

s3
sin(�t)[(Aa2 +Cc2)− (A− C)ac cos(�t)]

r = �

s
(c + a cos(�t)) +

n�2

s2
[Aa cos(�t) + (A− B)c sin2(�t)].

(32)

This case is a non-trivial generalization of Grioli’s result [42]. It admits two interpretations
as a motion of a body in liquid [5] or a motion of a charged body under potential and Lorentz
forces as described in section 2.2 above. It is noteworthy that this gives a new result in both
interpretations.

The angular velocityω = �ζ + (�α + nγ) no longer has constant magnitude as was the
case in Grioli’s precession. The resulting motion is not a regular precession. Althoughω andγ
are periodic functions of time, the motion is not in general periodic in space for arbitrary values
of n. However, if n

�
is rational the body returns periodically to its initial position. As far as

we know, such motions have not been considered previously. This solution can be generalized
further by choosingν as a function ofγ.

4. New general integrable cases

An exceptionally interesting situation is when the basic potential contains a combination of
terms with arbitrary constant multipliers. Let, say,

V = v +
∑

aivi (33)

wherev, {vi} depend onγ. If the problem of motion is integrable, then the complementary
integral will probably depend on the set of constantsai . If in the transformation (5) we choose
ν = n+

∑
nivi , where{ni} are free parameters, then in (10) the transformed potential we have

V ′ = v +
∑
(ai + nif )vi + f n − νl · γ − 1

2ν
2γI · γ. The constant termf n can be dropped

out as it does not contribute to the equations of motion. Moreover, the constantsai may be
redefined to absorb the terms containingf . Thus, if we setai + nif = bi , the potentialV ′

will depend on the arbitrary constantsbi but no more onf . Meanwhile, the complementary
integral will eventually depend onf , which can be substituted by the linear integralI3. As
there have been no restriction onf in this procedure, we get a general integrable case that
contains the arbitrary parametersn, {ni} more than the original one. It should be noted that
the solution of the generalized problem can be easily obtained from that of the basic one by
applying the considerations of section 2.

The above analysis applies to the first five of the seven known integrable cases in which
the potential has the required structure (see table 1). In our short paper [1] those generalized
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general integrable cases were presented without details of the method used. Expressions for
V,µ and the integrals of motion were provided in a final form suitable for direct verification
of the constancy of the integrals by virtue of the equations of motion.

4.1. On explicit solution of the general integrable cases

In this subsection we discuss the explicit solution of the generalized cases in terms of time.
Detailed equations of motion as well as the integrals of motion will not be reproduced here.
For them the reader is referred to [1] (see also the minor correction in [2]).

(1) The first case was obtained by applying the transformation (5) with

ν = n + n1(Aγ
2
1 +Bγ 2

2 +Cγ 2
3 ) (34)

to the Tisserand–Brun case [22,23] (in our terminology, this is the basic case for Clebsch’s
case, no 1 of table 1). The solution for this case was obtained, in the context of solving
Kirchhoff’s equations, by K̈otter in terms of theta functions of two arguments [47]. The
solution for the special casef = 0 was found earlier by Weber [50]. It is obvious that the
explicit solution in the generalized case, constructed according to theorem 2 of section 2,
will be expressed in the same class of functions.

(2) The second case is characterized by the choice

ν = n + n1γ
2
1 + n2γ

2
2 + n3γ

2
3 (35)

applied to case 2 of table 1. The basic casen = n1 = n2 = n3 = 0, is closely related
to the other Clebsch’s case of triaxial body. The solution of this case can be expressed in
terms of theta functions of two variables [47,55] and so will be the present generalization.

(3) The third case is obtained from case 3 table 1 by the choice

ν = n + n1γ1 + n2γ2 + n3γ3. (36)

Lyapunov’s cases1 = s2 = s3 = n1 = n2 = n3 = 0 [27] was solved by K̈otter, as well
as the related Steklov case, in terms of theta functions of two arguments [44, 55]. This
solution will cover the cases1 = s2 = s3 = 0 for arbitraryn1, n2 It is obvious that to
express the solution in the most general case it suffices to obtain the solution for the basic
casen = n1 = n2 = n3 = 0, s1s2s3 6= 0. This has not been done until now.

(4) The fourth case is obtained from case 4 of table 1 with the choice

ν = n + n1γ1 + n2γ2. (37)

The present result generalizes Kovalevskaya’s case by including four physically significant
parametersk, n, n1, n2. It also generalizes some earlier results of the present author. For
n1 = n2 = 0, we get the case of a body in a liquid [5] and if, moreover,n = 0, we get the
case of a heavy gyrostat found in [19] (see also [20]).
The Euler–Poisson variables in Kovalevskaya’s case were expressed by Kovalevskaya
herself in terms of hyperelliptic functions of time [18]. The solution was somewhat
simplified and systematized by Kötter [48, 49], (see also [10]). Explicit expressions for
the six variables can also be found in [10,51]. Many qualitative and global properties of
motion are discussed in [52] The same problem was treated in a large number of recent
works using methods of modern algebraic geometry and the inverse scattering method
(e.g. [55, 56] and references cited therein). Of special interest is the work [57], which
relates the Kovalevskaya case to a special version (f = 0) of Clebsch’s case by means of
a rational transformation and thus explicit solutions for the first can be obtained from that
of the other. The same idea was realized for our generalization of Kovalevskaya’s case to
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the gyrostat by Gavrilov, who related it to the full case of Clebsch (f 6= 0) solvable in
theta functions of two arguments [53]. Thus, it becomes evident that the generalized case
under discussion here is solved in terms of the same functions.

(5) The fifth case is obtained from case 5 of table 1 and the choice

ν = n + n1γ1 + n2γ2 +
N√

1− γ 2
3

. (38)

No attempt was made to obtain the general solution in the present case forε 6= 0. For
this it suffices to find the solution for the basic casen = n1 = n2 = N = 0, i.e. the case
of [28].

4.2. Comment on general integrable cases

Thus, of all known general integrable cases remains without generalization only the case of
a body in liquid found by Rubanovsky [26] that includes as special versions an earlier case
due to Steklov [8] and the case of a gyrostat by inertia considered by Joukovsky [29] and
Volterra [45]. The reason is obviously that the basic potential functionV = 0 in that case, see
(17), does not have the structure (33), and the method of the present section does not apply to
it. We remind ourselves that the full Rubanovsky–Steklov case was generalized in a previous
section by the introduction of an arbitrary function, but only as a conditional case on a fixed
level of the cyclic integral.

4.3. Physical interpretation of the new cases

In all the above cases the precession angleψ is a cyclic variable. All the forces acting on the
body are symmetric about theZ-axis. Let there be the following combination of static external
fields: a gravitational field with potential8g, an electric field of potential8e and a magnetic
field B whose scalar potential is8. Note that the three potentials can depend only onZ and
X2 + Y 2. The potential of the body can be written as

V = 6(m8g + e8e + B · σ) (39)

wherem, e andσ are the mass, electric charge and the magnetic moment contained in the
element of the body which at the current moment occupies the pointr(X, Y, Z) of the inertial
frame.

We first note thatV in all the new cases (see [1]) has polynomial expressions in the
components ofγ, except in one case, namely the fifth, which involves an algebraic singular
term. Thus, in most cases we find that it is suitable to choose the three potentials8g,8e

and8 to be polynomials inX, Y,Z, subject to Laplace’s equation and to the axial symmetry
condition. Due to the abundance of physical parameters representing the three distributions
and the coefficients of the three potentials, it should be easy to adjust those parameters to
match the potential in each case and, moreover, in a variety of choices. We turn now to the
less obvious possibility to obtain an adequate interpretation of gyroscopic forces as Lorentz
forces.

The vectorµ can be expressed directly in terms of the constant gyrostatic momentK and
the magnetic field

µ =K −6e
c
(r · B)r. (40)

In the case when the scalar potential of the external magnetic field can be expressed as a sum
like

8(X, Y,Z) = 81(X, Y, Z) + · · · +8N(X, Y,Z) (41)
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of homogeneous harmonic polynomials up to theN th degree, the formula (40) can be replaced
by

µ =K +
e

c

N∑
s=1

s68s(X, Y,Z)r. (42)

This results from applying Euler’s theorem for homogeneous functions.
We will consider further only two cases, the third and fourth of [1], in which the

components ofµ are of the second degree. In those cases we can take only two axisymmetric
harmonics in (41), i.e.

8(X, Y,Z) = a1Z + a2(3Z
2 − r2) (43)

thus giving

µ =K +6
e

c
[a1Z + 2a2(3Z

2 − r2)]r (44)

or, expressed in terms of the body system of coordinates,

µ =K +6
e

c
[a1r · γ + 2a2(3(r · γ)2 − r2)]r. (45)

Finally, we can write

µ1 = 6a2(Ixxxγ
2
1 + Ixyyγ

2
2 + Ixzzγ

2
3 + 2Ixxyγ1γ2 + 2Ixxzγ1γ3 + 2Ixyzγ2γ3)

+a1(Ixxγ1 + Ixyγ2 + Ixzγ3)− 2a2(Ixxx + Ixyy + Ixzz) +K1

µ2 = 6a2(Ixxyγ
2
1 + Iyyyγ

2
2 + Iyzzγ

2
3 + 2Ixyyγ1γ2 + 2Ixyzγ1γ3 + 2Iyyzγ2γ3)

+a1(Ixyγ1 + Iyyγ2 + Iyzγ3)− 2a2(Ixxy + Iyyy + Iyzz) +K2

µ3 = 6a2(Ixxzγ
2
1 + Iyyzγ

2
2 + Izzzγ

2
3 + 2Ixyzγ1γ2 + 2Ixzzγ1γ3 + 2Iyzzγ2γ3)

+a1(Ixzγ1 + Iyzγ2 + Izzγ3)− 2a2(Ixxz + Iyyz + Izzz) +K3

(46)

where, for example,Ixx = 6ex2, Ixyz = 6exyz and so forth are moments of the charge
distribution of the second and third degrees.

It is not hard now to verify that the third case of [1] corresponds to the choice

Ixy = Ixz = Iyz = 0 a1Ixx = a − An a1Iyy = b − An a1Izz = c − An
Ixyz = 0

Ixxx

3
= Ixyy = Ixzz = −An1

6a2

Ixxy = Iyyy

3
= Iyzz = −An2

6a2
Ixxz = Iyyz = Izzz

3
= −An3

6a2

K1 = 1
3An1 K2 = 1

3An2 K3 = 1
3An3.

(47)

Similarly, the fourth case is obtained by the choice

Ixy = Ixz = Iyz = 0 a1Ixx = −Cn a1Iyy = −Cn a1Izz = −3Cn

Ixxz = Ixyz = Iyyz = Izzz = 0
Ixxx

n1
= Iyyy

n2
= − 3C

4a2

Ixyy

n1
= Ixxy

n2
= − C

4a2
Ixzz

n1
= Iyzz

n2
= − 5C

12a2

K1 = 2
3Cn1 K2 = 2

3Cn2 K3 = Ck.

(48)

In both cases, a certain constant constituent ofµ results from a gyrostatic momentK of a rotor
and the rest from electromagnetic interaction. Bearing in mind that, unlike mass distribution,
the charge distribution can have negative density, we have more freedom in satisfying conditions
(47) or (48) by real physical situations. Similar interpretation can be given for the first and
second cases of this section by including a fourth-degree harmonic in (43).
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5. Conclusion

(1) The equations of motion of a rigid body acted upon by potential and gyroscopic forces
are shown to be form-invariant under the rotation transformation with position-dependent
angular velocity.

(2) Dual interpretation is given to the transformed equations as describing motion of another
body relative to an inertial frame under additional active forces. The picture of the
latter motion in all its detail is obtained from that of the original one through the given
transformation.

(3) This, in particular, enables the construction of:

(a) Five general integrable cases generalizing known ones by including several
parameters.

(b) Conditional generalizations, involving an arbitrary function of the position in the
structure of forces acting on the body, for all the fifteen known (general and
conditional) integrable cases as well as for all particular solutions of the problem.

Detailed examples of each type are given.
(4) Detailed physical interpretation is given for two of the new general integrable cases

as describing motion of a magnetized and electrically charged body under the action
of gravitational, electric, magnetic and Lorentz forces. A generalization of Grioli’s
precession describes a problem of motion of a body in a liquid.
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